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ABSTRACT
In this paper, we have introduced some common fixed point theorems, which satisfy the Jungck
iterative process for compatible mapping in cone metric space.
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I. INTRODUCTION

An abstract metric space was first introduced and studied by the French mathematician Frechet [22]
in1906. Many researchers have been generalized the concept of metric space as cone metric space,
semi metric space and quasi metric space etc, along with the generalization of contraction mappings
with applications [2, 3, 4, 5]. The concept of common fixed point theorems have been introduced by
Jungck [6, 7, 8, 9], which is generalized the Banach contraction principle [27]. Some interesting work
related to generalization of the contraction mapping and metric space can be seen in [11, 14-18, 31, 32]
and its references. Banach contraction principle is a basic fundamental theorem for fixed point theory.
Further, Jungck [7, 8, 10] introduced weakly compatible maps in metric space.

The concept of cone metric space was introduced by Huang and Zhang [13], which is generalization
of metric space in order to replace the real number with Banach space [25].

The Jungck multistep iteration scheme are generalization of Jungck-Mann, Jungck-Noor,
Jungck-Ishikawa iteration in cone Banach space, firstly, who introduced by Olalere and Akewe [26].

Banach valued metric space was considered by Rzepecki [1], Lin [28] and lately by Huang and
Zhang [13]. Basically for nonempty set X, the definition of metric d: X × X → �� = [0, ∞) is replaced
by a new metric, simply by an ordered Banach spaces E, d: X × X →E such that space are called cone
metric spaces (in short CMSs)

In this paper, we obtain some points of coincidence and common fixed points for two self-mappings
satisfying generalized Jungck iteration process (i.e. Jungck multiple iteration) in cone metric space.

Definition 1.1 [19, 20] we define the cone metric spaces and their convergence by [13] Huang and
Jungck.
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Let E be a real Banach space and P be a subset of E. The subset P is called Cone if it has the
following properties

(i) P is nonempty, closed and P ≠ 0.

(ii) 0 ⩽ a, b � � and x, y � � � �t� �a � �

(iii) P � (-P) = 0.

For a given cone P � �t we can define partial ordering � on E with respect to P by x � y if and
only if y – x � P. We will write x � y if x � y and x � y, while x � y will stand for y - x � intP,
where intP denotes the interior of P. The cone P is called normal if there exist a constant M � 0 such
that for all x, y � E

0 � t � a � � t � � � � a �.

The least positive number M � � satisfying the above inequality is called normal constant of P.

The cone P is a non-normal cone if and only if there exist a sequence ��t �� � � such that � �
�� � �� � ��t �� � �� � � .

Example 1.1 [12] Let E = ����t�� with � t � � � t �� + � tt �� on P = {x � �t t � � � on
[0,1] }. Clearly, this cone is not normal. To see it, consider

t� �
�O ���鍀��
鍀�� �

��h a� �
�� ���鍀��
鍀�� �

�

Then we have � t� � � � a� � � � and t� � a� �
�

鍀���
� �.

The cone P is called regular, if every increasing (or decreasing) and bounded above (or below)
sequence is convergent in E. If t� is a sequence such that t� � t� � t鍀 ������ t� ���� � a (or y
� � � t� � � � t鍀 � t� � t� ) for some y � E, then there is a x � X such that � t� O t �
� �t � � ��

Equivalently the cone P is regular if and only if increasing (respectively decreasing) sequence which
is bounded from above (respectively below) is convergent. It is well known that a regular cone is a
normal cone.

Definition 1.2 [19, 20] Let X is a nonempty set and E is a real Banach space. Suppose that mapping d:
X � X � E satisfy the following

(i) 0 � h tt a ��h �tt tt a � � and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d (y, x), for all x, y � �.
(iii) d(x, y) � d(x, z) + d(z, y) for all x, y � ��

Then d is called a cone metric on X and (X, d) is called a cone metric space.
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Let �t�����
� be a sequence in X and x � X , if for every c � �t with 0 � � there is �� � � such that

for all n � �� , d(t�, x) � � t then t� is said to be convergent , �t�� converges to x and x is the limit
of {t�} . We denote this by lim

� ��
t� = x or t� � t as n� �� If for every c � � with 0 � �� There is

�� � � such that for all n, m � �� t d(t�t t�� � c, then t� is called a Cauchy sequence in X. If
every Cauchy sequence in X is convergent in X, then X is called a complete cone metric space.

Definition 1.3 [19, 20] A point y � X is called point of coincidence of a family �� , i � �� of
self-mappings on X , if there exist a point x � � such that �� x = y for all i � �� , x is called
coincidence point of mapping �������

� .

Definition 1.4 [23, 24, 26, 30] Let (X, d) be a cone Banach space and f, g: X � X � E be two
mappings such that f(X) � g(X). For any t� � X, the sequence ��t�����

� is defined by Jungck
iterative scheme as follows

�t��� =�t�, n � � (1.1)

In the similar way [33], for any t� � � the Jungck Mann iterative scheme ��t�����
� is defined a

�t��� = (1 - ��) gt� + �� ft� , n� � . (1.2)

Where �������
� is a real sequence in [0, 1] such that ���

� ��� � �� It is also known as Jungck one step
iteration scheme.

For any t� � � , the Jungck Ishikawa iteration scheme ��t�����
� is generalized to Ishikawa

iteration [29] as follows

�t��� = (1 - ��) gt� + �� fa� ,

�a� = (1 - ��) gt� + �� ft� , n� � . (1.3)

Where �������
� and �������

� are real sequence in [0, 1]. It is also known as Jungck two step iterative
scheme.

The generalization of Noor iterative scheme [21] is known a Jungck Noor iterative scheme and is
defined as, for any t� � � the sequence ��t�����

� is expressed as

�t��� = (1 - ��) gt� + �� fa� ,

�a� = (1 - ��) gt� + �� f�� ,

��� = (1 - ��) gt� + �� ft� , n� �� (1.4)

Where �������
� , �������

� and �������
� are real sequence in [0, 1]. It is also known as Jungck three

step iterative scheme.
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In the continuation of Jungck-Mann, Ishikawa and Noor iteration, Olaleru and Akewe [26] defined
the multistep iteration mapping known as Jungck multistep iterative scheme, which is defined in cone
Banach space as follows.

Let t� � � the Jungck multistep iterative scheme for the sequence ��t�����
� is defined by

�t��� = (1 - ��) gt� + �� fa��,

�a�� = (1 - ��� ) gt� + ��� f����� , I = 1, 2, 3,……k-2�

�a��O� = (1 - ���O�) gt� + ���O� ft� , k � �t n� �� (1.5)

Where �������t
� ���� ����

� i = 1, 2 3, ….., K-1 are real sequences in [0,1].

II. MAIN RESULTS

Theorem 2.1 Let (X, d) be a cone metric space and P is a cone in E. Consider two mappings
f, g: X� E, which have coincidence point z � X (i.e fz = gz = p) with f(X) � g(X) and satisfy

h �tt �a �
� h �tt �a � � h �tt �t

� � � h �tt �t t � � � � �t � � �� �����

Where � is a monotonic increasing and continuous function such that � � � �t then Jungck
multiple iteration ��t�����

� converges to p. Further, if f, g commutes at p (i.e. f and g are
weakly compatible), then p is the unique common fixed point of f and g.

Proof: From (1.5), we discuss

d(gt���t �) = d ((1 - ��)gt� � ���a��t �)

� (1 - ��) d(gt�t �� � �� h��a��t �)

=(1 - ��) d(gt�t �� � �� h��a��t ��)

=(1 - ��) d(gt�t �� � �� h��� t �a��)

from (2.1), we have

� �O �� h �t�t � � ��
� h ��t �a�� � � h ��t ��

� � � h ��t ��
= (1 - ��) d (gt�t �� � �� � h��� t �a��), (fz = gz = p). (2.2)

From (1.5) and (2.1), we have

d( ga��t �) � h� � O ��� �t� � ����a��t ��
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= � O ��� h��t�t �� � ��� h��a��t ��

= � O ��� h��t�t �� � ��� h���t �a���]

� �O ��� h �t�t � � ���
� h ��t �a�� � � h ��t ��

� � � h ��t ��
= � O ��� h��t�t �� � ��� � h���t �a��� . (2.3)

Putting (2.3) in (2.2), we obtain

d(gt���t �) � (1 - ��) d (gt�t �� � � �� � O ��� h��t�t �� � ��� �� �� h���t �a���

= (1 - �� � O � O � �� ��� � h��t�t �� � ��� �� �� h���t �a���

= (1 - �� � O � O � �� ��� � h��t�t �� � ��� �� �� h��t �a���. (2.4)

Similarly,

h� �a��t �� � h��� O ��� � �t� + ��� �t�鍀 , p)

� �O ��� h � �t�t �� + ��� h� �t�鍀 , p)

� �O ��� h � �t�t �� + ��� h� ��t �t�鍀 )

� �O ��� h �t�t � � ���
� h ��t �a�鍀 � � h ��t ��

� � � h ��t ��
� � O ��� h � �t�t �� + � ��� h� ��t �a�鍀 ). (2.5)

From (2.4) and (2.5), we obtain

d(gt���t �) � � � O (1 - � � �� O � �� ��� � h��t�t ��

+ ������� � O ��� h �t�t � � �鍀�������� h��t �a�鍀�

= (1 – (1 - ���� O �O � ������ O ���������� � h��t� t �� � �鍀����� h��t �a�鍀�� (2.6)

Similar process as in (2.3) and (2.5) , we have

h �a�鍀t � � � O ��鍀 h �t�t � � ���鍀 h a��t � � (2.7)

From (2.6) and (2.7) and proceed them, we have

h ��t���t �) � � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� h��t�t ��

+ ��O�����������鍀������O�h��t �a��O��
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� � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� h��t�t ��

+ ��O�����������鍀������O�� � O ���O� h �t �t� � ���O� h ���t �t� )]

� � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� h��t�t ��

+ ��O�����������鍀������O�� � O ���O� h �t �t� � ����O� h ��t �t� )]

� � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� � ���O�����������鍀������O� h �t� t �

� � � O (1 - � � ��) d (�t�t �)

� � � O (1 - � � ) d (�t�t �)

� d(�t���t �) � d (�t�t �) . (2.8)

Hence �t� � �t since 1 - � � � for all n.

Now, we show that p is unique. Suppose there exist another point of coincidence is �� , then there is an
�� � �, such that ��� � ���� ���

Now,

h �t �� � h ��t ��� �
� h ��t ��� � � h ��t ��

� � � h ��t ��
� �h ��t ��� � � h��t ����

(1 - �)h��t ��� � �t � � (1 - �) < 1]

� h �t �� � � � h �t �� � �.

So p = �� (i.e. p is unique).

Since �� � �� � �t then ��� � �� and ��� � �� but ��� � ���t so �� � ��� i.e. �� � �� � � or
�� � �� � �. So z is unique common fixed point of � ��h �.

Theorem 2.2 Let (X, d) be a cone metric space and P is a cone in E. Consider two mappings
�t � �� � �t which is weakly compatible at coincidence point p with � � � ���� and
satisfy

h �tt �a � �h �tt �a � 폀 h �tt �t t � � � � �t 폀 � � . (2.9)

Then the Jungck multistep iteration ��t�����
� converges to p and �t� have unique common

fixed point p.

Proof: From (1.5) and (2.9) with the fact that �� � �� � �t we have

h �t���t � � h� � O �� �t� � ���a��t ��
� � O �� h��t�t �� � �� h��a��t ��
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� �O �� h��t�t �� � �� h��a�� t ���

� � O �� h��t�t �� � �� h��� t �a�� �
� � O �� h��t�t �� � �� � � h �� t �a�� � 폀 �h ��t �� ��

� � O �� h �t�t � � �� � h �� t �a�� �� � �� � � � (2.10)

Again from (1.5) and (2.9), we have

h �a��t � � h� � O ��� �t� � ����a��t ��

� � O ��� h �t�t � � ��� h��a��t ��

� � O ��� h �t�t � � ��� h��� t �a���

� � O ��� h �t�t � � ��� �� h �� t �a�� � 폀 h ��t �� �

� � O ��� h �t�t � � ��� � h �� t �a�� . (2.11)

From (2.10) and (2.11), we obtain

h �t���t � � � O �� h �t�t � � � �� � O ��� h �t�t � � ������� h��t �a���

� � O ���� O � O � �� ��� � h �t�t � � ������� h��t �a��� . (2.12)

Similarly, we have

h �a��t � � h� � O ��� �t� � ����t�鍀t ��

� � O ��� h �t�t � � ��� h��t�鍀t ��

� � O ��� h �t�t � � ��� h���t �t�鍀�

� � O ��� h �t�t � � ��� � h ��t �a�鍀 � 폀 h ��t ��

� � O ��� h �t�t � � ��� � h ��t �a�鍀 � (2.13)

Continuing above process, we have from (2.12) and (2.13), we get

h �t���t � � � O ���� O � O � �� ��� � h �t�t �

� ������� � O ��� h �t�t � � �鍀�������� h �t �a�鍀

� �O ���� O � O � � O ��� �� ��� � O ���������� h �t�t �

� �鍀�������� h �t �a�鍀 . (2.14)



[Tiwari & Mishra , 6(3): March 2019] ISSN 2348 – 8034

DOI- 10.5281/zenodo.2598126 Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

291

Similarly,

h �a�鍀t � � � O ��鍀 h �t�t � � ���鍀 h��a��t �� . (2.15)

Continuing the above process, we have

d (gt���t �) � � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� h��t�t ��

+ ��O�����������鍀������O�h��t �a��O��

� � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� h��t�t ��

+ ��O�����������鍀������O�� � O ���O� h �t �t� � ���O� h ���t �t� )]

� � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� h��t�t ��

+ ��O�����������鍀������O�� � O ���O� h �t �t� � ����O� h ��t �t� )]

� � � O (1 - � � �� O ��O� �� ��� �����鍀������O�� � ���O�����������鍀������O� h �t� t �

� � � O (1 - � � ��) d (�t�t �)

� � � O (1 - � � ) d (�t�t �)

� d (�t���t �) � d (�t�t �) . (2.16)

Hence �t� � �t since 1 - � � � for all n.

Now, we show that p is unique. Suppose there exist another point of coincidence is �� , then there is an
�� � �, such that ��� � ���� ���

Now,

h �t �� � h ��t ��� � � h ��t ��� � 폀 �h���t ���� � �h ��t ��� � � h��t ����

(1 - �)h��t ��� � �t � � (1 - �) < 1]

� h �t �� � � � h �t �� � �.

So � = �� (i.e. � is unique.)

Since �� � �� � �t then ��� � �� and ��� � �� but ��� � ���t so �� � ��� i.e. �� � �� � �
or �� � �� � �. So z is unique common fixed point of � ��h �.

Theorem 2.3 Let (X, d) be a cone metric space and P is a cone in E. Consider two mappings f,
g : X� �t which are weakly compatible at coincidence point p with f(X)� g(X) and satisfy
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h �tt �a � �max � h �tt �t t h �at �t t h��tt �a� ,

h �tt �t � h��at �a�
� t

h �tt �a � h��at �a�
� � t� � � � �� ������

Then Jungck multistep iteration ��t�����
� converges to their coincidence point and f, g have

a unique common fixed point of their coincidence point.

Proof: Case-I : If

h �tt �a � � h �tt �a
� � �h �tt �t � h��tt �a��
� O � h �tt �a � � h ��tt �t�

h �tt �a �
�

� O �
h �tt �t � � �t � �t�

� h �tt �a � � � �t � �at �tt a � ��
Then �t � �t � �a � �a�

Now, we show that � is unique. Let � and �� be two coincidence point of � ��h � such that�t � �t �
� ��h �a � �a � ��, then

h �t �� � h �tt �a � � h �tt �a � � h��t ���

� O � h �t �� � � � � � �� .

Also, �t � �t � � � ��t � �� and ��t � �� but ��t � ��tt therefore �� � �� � �� � �� �
�� Hence coincidence point is unique and therefore � is unique common fixed point of � ��h ��

Case-II: If

h �tt �a � � h �at �t
� ��h �at �a � h��at �t��

h �tt �a �
�

� O � h �at �a � � �a � �a�
� h �tt �a � � � �t � �at �tt a � ��

So as in case first, � is unique common fixed point of � ��h ��

Case –III: If

h �tt �a � � h �tt �a
� � h �tt �t � h �tt �a � � �t � �t�

� h �tt �a � � h �tt �a �
From case second, we have similar result.

Case-IV: If
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h �tt �a � �
h �tt �t � h �at �a

� �

Since point of coincidence is unique, so�t � �t ��h �a � �a. Therefore proof is trivial.

Case-V: If

h �tt �a � �
h �tt �a � h �at �a

� �

Since point of coincidence is unique, so �a � �a. Therefore

h �tt �a � �
h �tt �a

�.

So trivially satisfy as case first.

Hence in all cases, we have � is the unique common fixed point of � ��h ��

Example 2.1 Let � � �t � t � � �t �t 鍀 ��h ��t h� be a cone metric space and mappings � ��h �
such that � � � ���� and defined as

� t �
���� t � �

t
�
��� t � ��t �� t � t � � � �� t � �

t � � � �� t � �� O �t ��
Satisfy all the conditions in above theorems. It is clear that 0 is the coincidence point and common
fixed point of � ��h �.
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